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A Binary Adaptive Decision-SelectionEqualizerfor
ChannelsWith NonlinearIntersymbolInterference

DanielJ. Sebald,� Member, IEEE, and� JamesA. Bucklew

Abstract—An enhanced adaptive decision feedback equalizer
(ADFE)
�

is presented for binary data transmission applications
wher� e the communication channel exhibits nonlinear intersymbol
interference (ISI). The nonlinearity in the channel manifests itself
as� a distorted constellation space constructed from the equalizer
input state variables. Since a conventional ADFE can construct
a� hyperplane decision boundary of only one orientation with
symmetrically� spaced distance from the origin as a function of the
detected
�

feedback symbols and feedback filter coefficient values,
ther
�

e is room for improvement since the distorted constellation of
the
�

nonlinear system is better served by hyperplane boundaries of
v� arying orientation.

The
	

method proposed here is not to feed back the decision vari-
ables� but, instead, to use these binary variables to choose and adapt
differ
�

ent sets of coefficients, i.e., different hyperplane boundaries.
Hence, the name given to this new method is the adaptive decision-
selection� equalizer (ADSE). Although the hyperplane may not be
the
�

optimum boundary for the conditional constellations, in many
cases,
 it is an adequate approximation. Nonetheless, for nonlinear
channels,
 the ADSE is generally an improvement over the conven-
tional
�

ADFE in high signal-to-noise ratio (SNR) regimes, where the
bit
�

error rate (BER) is within the desired operating range.
The major advantage of the new method is improved perfor-

mance� on the studied channel while retaining simplicity when im-
plemented
 as a variation of the least-mean-squared (LMS) algo-
rithm.� Some drawbacks are decreased convergence rate and limi-
tations
�

of the minimum mean-squared-error (MMSE) strategy of
optimization,� as implemented by the LMS algorithm, for a system
wher� e error probability, not MMSE, is important.

Index
�

Terms—Adaptive equalizers, communication channels,
communication
 system nonlinearities, decision feedback equal-
izers, nonlinear detection, nonlinear systems.

I. INTR
�

ODUCTION

AD
�

APTIVE equalizerswere first proposedby Lucky [1],
who� usedasign-basedupdatealgorithmtominimizeadis-

tortion
�

measureof a tapped-delayline filter. Applicationof the
LMS algorithmto theadaptive transversalequalizeris studied
in
�

NiessenandDrouilhet [2]. (SeealsoProakisandMiller [3]
for greaterdetail.)Austin [4] introducesa nonlinearslicerand
linear
�

feedbackloop to the nonadaptive transversalequalizer
and� createsthe decisionfeedbackequalizer(DFE) to greatly
improveperformanceover thetransversalequalizer. TheLMS-
based
�

adaptiveversionof theDFE(theADFE), is proposedand
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studied� in George et� al. [5]. (Seealso Proakis[6] for further
studies.)�

Fig. 1 illustratestheADFE in abinarypulseamplitudemod-
ulation (PAM) scenarioat baseband.An independent,identi-
cally! distributed(i.i.d.) informationsignal is

�
passed" throughanonlineardeterministicchannelencompassing
transmission
�

pathway effects,thereceiver filter, anddecorrela-
tion
�

signalprocessing.In ourmodel,azeromean,additivewhite
Gaussian
#

noise(AWGN) is
�

addedto the channel
output$ to

�
form the equalizerinput . The de-

tector
�

consistsof two linear, discrete-timesubnetworks. The
input is passedthroughan adaptive, delaynetwork with coef-
ficients ,% whereasthe past
decisions
&

are� fed back throughan-
other$ adaptive, delaynetwork with coefficients

. A trainingsequence(positionA in Fig. 1)
is usedto adapttheADFE startingfrom someinitial

set� of coefficients.After training, the ADFE is switchedover
to
�

decision-directedmode(positionB in Fig. 1). A processing
delay
&

mustbeintroducedto compensatefor thedelayof the
channel! andlengthof theequalizerfeedforward filter. If is
the
�

memorylengthof thechannel,thenageneralruleis to select
,% which is thenumberof feedbackvariables,to beapproxi-

mately' . Thereasonfor thisis thatthefeedbackfilter can-
cels! ISI, andthereare past" symbolscontributing to the
ISI. [Notethat“past” is referencedtodelay ,% e.g.,
is themostrecentpastdecisionwith regardto input when�

.]
Def
�

ine vectors

TheLMS algorithm[7] for adjustingfilter tapcoefficientstakes
the
�

form

where�

sign�

and�

1053-587X/02$17.00© 2002IEEE
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Fig.
)

1. Block diagramof anADFE. Whentheswitchis in positionA, theADFE is in trainingmode.PositionB correspondsto decision-directedmode.

e* xceptduringtraining,in which case

The
+

goal is to drive the energy of the error signal to
�

a
minimum,i.e., adapt and� so� that thepreslicerfilter
output$ is as closeas possiblein the MMSE senseto a valid
symbol.� Updateconstant is

�
chosenlargeenoughfor sufficient

tracking
�

yetsmallenoughto ensurestabilityandsmallresidual
misadjustmentfor increasedaccuracy [7].

The
+

ADFE hasremaineda usefulequalizingtechniquebe-
cause! of its adaptivenaturefor unknown channelsaswell asits
simplicity� of implementation.However, therehasbeeninterest
in equalizingdatacommunicationchannelsexhibitingnonlinear
beha
�

vior [8]–[12], anapplicationfor whichanADFEoftendoes
notwork well sinceit containsonly linearfiltering components,
as� shown in Fig. 1.

One
,

of theoriginal approachesto equalizinga nonlinearISI
channel! is [13], whereaVolterraseriesreplacesthelinearfeed-
back
�

andfeedforwardportionsof theADFE. Researchonafast
transform-domain
�

versionof Volterra filtering is discussedin
[14]. A morerecentdetectionstrategy is theadaptive Bayesian
neuralnetwork of [10]. There,it is shown how conditioning
on$ the decisionstatecanbe viewed asa reductionin the pat-
tern
�

spaceconstellationformedby theequalizerinputvariables,
which� is a phenomenonthat is centralto our methodproposed
in this paper. In [15], anadaptive Kalmanfilter is proposedfor
impro
�

ved equalizationperformanceon linearISI channels,and
it
�

is suggestedthereinthatthemethodmaybeextendedto non-
linearequalization.

In
-

[12], theauthorsstudyamethodof nonlinearequalization
based
�

onthesupportvectormachine(SVM) [16], [17]. Thede-
cision! feedbackstrategy is usedin [12] by simply feedingpast
decisions
&

into the SVM input. Although this improves perfor-
mance' noticeably, we argue that the binary natureof the de-
cision! is not suited for the SVM input, which typically is a
real-valuedvariable,and proposea modification of the feed-
back
�

ideawherebythepastdecisionsareusedto selectfrom a
set� of SVMs.ThevariousSVMs aretrainedon subsetsof data,
conditioned! on thepastdecisions . Thisdecision-selection

methodshowsevenfurtherimprovementover thedecisionfeed-
back
�

approach.The SVM, in its currentstateof research,is
a� block adaptive algorithmasopposedto a symbol-by-symbol
adapti� ve algorithm.

In this paper, we investigatethesameapproachof selecting
a� detectormodelbasedon previousdecisionsbut with conven-
tional
�

linearelementsof theADFE asopposedto thenonlinear
mappingsof theSVM. It is truethatgiven theappropriatekernel
for
.

theSVM, thelinearmodelis simply a subsetof thatwhich
the
�

SVM canprovide,andhence,theinvestigationto follow may
be
�

encompassedby thatof [12]. However, themeritsof linear
elements* warrantmorespecific consideration.The trainingal-
gorithm/ for theADSEisbasedontheLMS algorithm,andthere-
fore, the proposedmethodis adaptive on a symbol-by-symbol
basis.
�

It is useful for slowly varying channels,just as is the
ADFE.
0

TheADSE retainsthesimplicity of theADFE andhas
the
�

potentialto significantly improve performance,depending
on$ thenatureof thechannelnonlinearity. Theonly addedover-
head
1

is memory. We are interestedin thesesimplestructures,
although� they may be suboptimum,becausein many applica-
tions,
�

speedandsimplicity areof overridingimportance.
In
-

SectionII, we presentthe basebandmodel for nonlinear
channels! oftenseenin voicebanddigital communicationlinks.
Section
2

III discussestheconceptof theADSE.First,anexample
input
�

spaceis usedto illustrateconditionalconstellations.From
that,
�

themotivationfor theADSEbecomesevident.SectionIV
gi/ vesresultsof somesimulationsonnonlinearISI channels.We
conclude! in SectionV with commentsaboutADSE character-
istics
�

andlimitationsof theLMS-basedapproach.

II.
-

CHANNEL MODEL

Thelinearchannelmodelis describedby1

1T
3

echnically, the coefficients shouldbe 4 57698 for time-varying channels.
However, we leaveout thetime-varyingindex to avoid confusingnotation.The
sameholdstrue for : ;=<?> .
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where� is thecausalfinite impulseresponse(FIR) modelof
the
�

channel,normalizedto have unit energy, i.e.,
. Let be

�
the varianceof the zeromeanAWGN. Then,for

the
�

linearchannel,theSNRis

SNR
2

because
�

of theunit energy propertyof thechannelandchannel
input symbols.

Typically, the nonlinearchannelsof interesthave a mem-
oryless$ nonlinearityin combinationwith a linearly dispersive
element* [8]. Therefore,we will examinetwo basicnonlinear
modelsandassumethat theadaptive equalizeris to beusedon
channels! having mild or, at least,lessthanseverenonlinearities.
The
+

two typesof nonlinearityarethesimpleWienermodeland
the
�

simpleHammersteinmodel [18]. Let be
�

an interme-
diate
&

variable.TheWienermodelis a linearFIR filter followed
by
�

a polynomialnonlinearity, i.e.,

where� are� FIR filter coefficients,and are� polynomial
coef! ficients.Becausethe AWGN is addedafter the dispersion
and� nonlinearity, it is straightforward to adjustthe SNR defi-
nition.@ Let for

.
be
�

all permutationsof the
channel! input space ,% andarrangethe FIR coeffi-
cients! in vector form as . Then, the
a� verageSNRis

SNR
2

The
+

Hammersteinmodelinterchangesthedispersionandpoly-
nomialoperations

Again,adjustmentof thedefinition for averageSNRis

SNR
2

which� is independentof thechanneldispersionbecauseof the
unity power assumptionof theimpulseresponse.

III. ADAPTIVE DECISION-SELECTION EQUALIZATION

A. PatternSpacesandtheADFE Limitation for Nonlinear
Channels

The detectionproblemmay be viewed as a patternrecog-
nition problemwherethe statesof the equalizerfeedforward
f
.
ilter areinput variables.A goodpresentationof this viewpoint

is included in Chen et� al. [10]. Since is a function of
,% the input space is

�
a func-

tion
�

of . Thus,the noise-free
system� has (not

A
necessarilyunique)constellation

Fig.
)

2. Conditionalconstellationsfor a two-input ( B CED ), two decision
state( F GIH ), onedelay( JLKNM ) equalizerwherethechannelis linear ISI
with OP?Q7R?SUTWVYX Z\[^]^Z`_9a=b?cedgfYh iYjlk^m`n9o7prqts^uwvgxYy z\{w|ez~}9�7�r���w� conditioned
on thecorrectpastdecisionvariables.

points" ,% grouped/ into two
sets�

one$ setfor eachdesiredclassification.We canfurtherpartition
the
�

constellationsetsbasedonthe possible" paststates.Sim-
ilar
�

to thedefinition of theequalizerdecisionstate ,% define
the
�

correctpastsymbolsas

and� let ,% be
�

an enumerationof all the ele-
mentsof . Then,theconditionalconstellationstake
the
�

form

As
0

an example, Fig. 2 illustrates the constellationfor a
channel! with linear ISI

and� equalizer ,% and�
. Concentratingon just one of the subfigures and

ignoring
�

the lines for the moment,pointsbelongingto
are� marked or$ ,% andpointsbelongingto are� marked
or$ . Sincethechannelhasmemory and� feedforward
f
.
ilter length in

�
this example,the cardinalityof each

set� is since� memberswithin setsareunique.
However, note that this channel has severe ISI becausea
memberof onesetis very neara memberof theotherset.For
this
�

reason,symbol-basedequalizerswithoutdecisionfeedback
perform" poorly on this channel.The four separatesubfigures
of$ Fig. 2 show the conditional constellationswhere points
belonging
�

to are� marked and� wherepointsbelonging
to
�

are� marked .
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Fig.
)

3. Conditionalconstellationsfor a two-input, two-decision,one-delay
equalizerwherethe channelis nonlinearISI with ����7�9�����\� �Y�^�^���9�=�?����Y� �\���e `¡9¢7£~¤¦¥^§©¨«ªY¬ ­\®w¯e­±°9²=³µ´·¶w¸

and ¹º¼»=½?¾À¿ÂÁÃ�Ä7Å9ÆÈÇ¦ÉYÊ ËÍÌÎ Ï7Ð9ÑÈÒ«ÓÕÔ ÖØ×Ù Ú=Û?Ü .

If we considerthespaceof input variables and� fix
,% settingthepresliceroutput

to
�

zerodefinesa hyperplanein theinput space,i.e.,

which� servesasthedecisionboundaryfor thedetector. Wewill
call! thesetof suchhyperplanestheconditionalÝ h

1
yperplanes.As-

suming� thecorrectdecisionsarein thedecisionstatevector—a
reasonableÞ assumptionwhenoperatingin thelow probabilityof
error* regime—andrestrictingtheclassof detectorsto belinear
hyperplanes,decisionregionsaresuperimposedover thepattern
spaces� of Fig.2 usingaVoronoipartition[19] of thetwo closest
points" among and� as� aroughapproximationto
the
�

equalizerproviding thesmallestprobabilityof erroramong
all� suboptimumlineardetectors.

An
0

interestingpropertyof theconstellationsets in
�

the
linearISI case(seeFig. 2) is thatthey aresymmetricaboutthe
origin$ sincethey areformedfrom a linearcombinationof input
symbols� belongingto . A similar propertyexists for
the
�

hyperplanesthatcanbeconstructedby anADFE. As illus-
trated
�

in Fig. 2, the feedbackportion of an ADFE ostensibly
selects� a different ISI removal constantbasedon the decision
state,� effectively changingtheconditionalhyperplaneboundary
distance
&

from the origin. Sincethe input to the feedbackfilter
belongs
�

to ,% thehyperplanesmustbedistancedsym-
metrically' abouttheorigin.

If
-

we now examine the constellationin the caseof non-
linear ISI, we find that symmetryaboutthe origin no longer
e* xists. Fig. 3 shows how the pattern spaceis distorted in
the
�

caseof a cubic Wiener nonlinear channelmodel with

Fig. 4. Conditionalconstellationsfor a two-input, two-decision,one-delay
equalizerwherethechannelis nonlinearISI with ßà¼á=â?ãÀäæå9ç7è9é\êìëYí îµï ð7ñ9ò\óôÕõ ö^÷ ø7ù9ú

and ûü¼ý=þ?ÿ������ ���
	��
�������������� ��������� "!$#&%('�)+*-,�. /�021�/
34�5�687�92: .

and� . Again, theVoronoi
partition" of the two closestpoints among the constellation
sets� servesasanapproximationto thebestlinearsuboptimum
detector
&

. Clearly, thebestconditionalhyperplanesarenolonger
parallel," norarethey positionedsymmetricallyabouttheorigin.
Since
2

the ADFE canonly constructparallelhyperplaneswith
symmetric� distancesabout the origin, it is no surprisethat
ADFE performancein thenonlinearscenariodegrades.

As
0

a secondexample, consider the cubic Hammerstein
channel! modelwherethe filter andnonlinearoperationof the
W
;

ienerchannelare interchanged,the patternspacefor which
is
�

shown in Fig. 4. The optimumconditionalhyperplanesare
now parallel,which is goodfor the ADFE solution.However,
the
�

wholeconstellationis shiftedtowardthefirst quadrant,and
once$ again, theADFE will performpoorly on sucha channel.
The
+

experienceof Biglieri et� al. [8] is thatwhenthelineardis-
persion" follows thenonlinearity(i.e.,Hammerstein),distortion
is
�

not as severe as when the nonlinearity follows the linear
dispersion
&

(i.e.,Wiener).Theillustrationsof Figs.3 and4 attest
to
�

this,but certainly, this is no argumentfor generalization.

B. Benchmark

As
0

a benchmarkdetector, we usea Bayesianclassifier for
equalizers* with inputparametersdefinedsimilarto theADFEof
Section
2

I. A probabilitydensityfunction is constructedfor the
inputspaceunderthetwo classes,andahypothesistestdecides
the
�

outputsymbol,i.e.,

(1)
A



2290 IEEE TRANSACTIONSON SIGNAL PROCESSING,VOL. 50,NO. 9, SEPTEMBER2002

where� hypothesis declares
&

to
�

be ,% hypothesis
declares
&

to
�

be ,% and

where� is the probability density associatedwith
random vector ,% and is an

-length randomvector with independentcomponentsdis-
trib
�

utedsimilar to . In our channelmodelwith zeromean,
AWGN

C. ADSEConcept

Thereareseveralreasonsfor stayingwith theclassof hyper-
planes" for decisionboundaries,althoughit wasclearlyshown in
[10] thatmethodssuchasneuralnetworkswith Gaussiankernels
can! be usedto achieve performancenearthat of the Bayesian
classif! ier. First and foremost,the hyperplaneis the easiestto
w� ork with in termsof processingandadapting.It classifiesef-
ficiently, andtheLMS algorithmmaybeusedfor time varying
channels.! (However, thereis a caveatwith theLMS algorithm,
as� discussedlater.) Second,if the addednoisedoesnot match
the
�

modelusedin the neuralnetwork method(or any method
assuming� adistribution for thenoise),performancemaysuffer.
Third,
+

in the caseof a memorylessnonlinearity, the decision
conditioning! methodmayreducethepatternspaceto something
where� a hyperplaneis a good approximationto the optimum
boundary
�

. Thisphenomenonwas observedandutilized in [10].
Gi
#

ven whatwehaveseen,a logical progression—ifwewant
to
�

restrict the detectorto the classof linear hyperplanes—is
to
�

use the decision state to pick a different hyperplaneas
opposed$ to filtering and feeding back the decision state.
That is, thereare possible" states,and for eachstate,we
assign� a differentsetof feedforward filter coefficients
and� ISI removal constant for . In this
w� ay, the conditional hyperplanescan achieve nonsymmetric
distances
&

abouttheorigin aswell asdifferentorientations.Let
be
�

a 1-to-1 function for
choosing! which classifier to usebasedon the decisionstate.2

<
Then,thegeneralLMS-basedADSE algorithmis describedin
TableI andillustratedin Fig. 5.

As a contrastto the selectionidea, considerreplacingthe
linear
�

filter of theADFE feedbackloopin Fig.1 with aVolterra
series,� which is themethodstudiedin [8] and[13]. As notedin
[8], suchanapproachmustdealwith avery largenumberof pa-
rameters.Þ In [13], thenumberof parametersis reducedby man-
ually selectingthoseof significancefor the typical voiceband
telephone
�

channel,which is a somewhat undesirablepractice.
Theparametersof themodeladaptusingaMMSE gradientde-
scent� algorithm.Conveniently, thecostisalinearfunctionof the
adapted� parameters,yet theupdatealgorithmis rathercomplex.
The
+

importantpoint is that a Volterra filter (or any nonlinear

2Themappingcanbeanything sinceadaptive equalizercoefficientsareini-
tialized
�

to thesamevaluesfor thevariousconditionalhyperplanes.

TABLE I
LMS-BASED ADSE ALGORITHM W

=
HERE HYPERPLANE ORIENTATION

AND
> D

�
IST
?

ANCE F
)

RO
@

M ORIGIN
@ A

A
RE
@ A
A

LLO
B

WED TO V
C

AR
>

Y AS A

F
)

UNCTION
D

OF THE D
�

ECISION
E STA

F
TE

model' for thatmatter)in thefeedbackloop is somewhatextra-
neoussincethereareonly vG aluesinput to thefilter. Rather
than
�

usea sophisticatednonlinearmodelto map points" for
remoÞ ving ISI, thecurrentproposedapproachis mucheasierto
implement.Furthermore,theADSEhasfull degreesof freedom
with� regard to ISI removal.

It is true that when is chosentoo large, the ADSE will
e* xhibit problemsof excessive parameterizationsimilar to the
V
H

olterrafilter. Excessive parameterizationis a genericproblem
in
�

theimplementationof any nonlinearscheme.Excessparam-
eters* essentiallyactasnuisanceparametersandadverselyeffect
system� performance.Furthermore,large meansthat large
amounts� of training dataarenecessary. However, we have the
option$ of notmakingall thedecisionstatesbepartof theselec-
tion
�

process.It is typically the casethat the most recentpast
decisions
&

are the most influential on ISI. Therefore,it is our
opinion$ that the most recentdecisionscan be usedfor selec-
tion,
�

whereastheolderdecisionsareusedin theADFE fashion
if computationalcomplexity is anissue.

D.
I

DiscussionAboutLMSAlgorithm

Although
0

the ideaof selectingdifferenthyperplanesseems
logical,
�

thereis a minor problemwith this approach—onenot
so� muchrootedin theconditioningprocessbut morehaving to
do
&

with thebehavior of MMSE-basedalgorithms.TheMMSE
solution,� which the LMS algorithmstochasticallyapproaches,
does
&

notnecessarilyachieve theminimumerrorprobability. To
illustratethis,aconditionalpatternspace( )

J
for thesystem

used to generateFig. 3 is isolatedin Fig. 6. The Bayesianso-
lution restrictedto hyperplanes(thesolid line )

J
andthe

empirical* MMSE solutionrestrictedto hyperplanes(thedashed
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Fig.
)

5. Block diagramof theADSE.Ratherthanfeedingbackpastdecisionsasin Fig. 1, thePAM to integerconverterselectsseparatinghyperplaneconstant
� K

andorientationL .

line
�

)
J

arealsoshown. TheBayessolutionrestrictedto
hyperplanesis approximatedby the Voronoi partition for the
tw
�

onearestpointsbetween and� . Theempirical
MMSE
M

solutionwas constructedby simulatingthe ADSE for
the
�

Wienernonlinearchannel.It isshownin [20] thattheasymp-
totic
�

linearMMSE boundaryfor anexampleof this natureis a
line perpendicularto the -axis,bisectingthetwo nearestpoints
of$ theprojectionsof and� onto$ the -axis.This
is, in fact,theresultfor a noise-freeADSE simulation.Whatis
sho� wn in Fig.6 istheMMSE boundarythatoccursfor asimula-
tion
�

with SNRof 17 dB, andwe seethattheboundarydeviates
some� whatfrom theasymptoticsolution.

Becauseof the ISI, the orientationof the MMSE solution
will� notnecessarilybenearthedesiredBayesiansolution.Con-
ditioning
&

on pastsymbol decisionsreducesthe constellation,
which� is certainlydesirable,but it alsocreatesa twistedpattern
space� in this example.If one imaginesGaussiandistributions
centered! aboutthepointsof theconstellation,it shouldbeclear
how performancedegradesusingan MMSE-basedalgorithm.
Performancemay not degradetoo significantly in this two-di-
mensional' scenario,but whenextendingto higherdimensions,
the
�

resultis precarious.

IV. MONTE C
N

ARLO S
2

IMULATIONS

Chen
N

et� al. [10] show thatundertheassumptionthat thede-
cision! stateis correct—whichis a mild assumptionwhenoper-
ating� in thelow BERregime—choosingthenumberof feedfor-
w� ard input variablesonegreaterthan the decisiondelay, i.e.,

,% yields an equalizerperformanceas good as
when� the numberof input variablesis more thanonegreater
than
�

thedecisiondelay, i.e., . We arguethesame
is approximatelytrue in the caseof the ADSE. The last ele-
ment' of the input vector, i.e., ,% is a function
of$ . Hence,any

with� is
�

independentof
since� thetransmittedbinarysignalis assumedi.i.d. Theseaddi-
tional
�

input variablesactasnuisanceparametersif includedas

Fig.
)

6. Conditionalconstellation(O�PRQ ) subjectto 17 dB AWGN for the
systemusedto generateFig. 3. By imagining Gaussiandistributionsabout
the
�

constellationpoints,onecanseethat theMMSE hyperplaneS will
leadto a highererror probability decisionthandoesthe BayesianhyperplaneT

.

part" of the feedforward filter input.3
U

A generalprinciple is to
choose! longenoughto includemostof thesignificantenergy
of$ thechannelimpulseresponse.When ,% is

�
a

functionof . Therefore,theuseful
past" decisionstatesare ,%
and� is adequate.Naturally, with thechannelun-
known, thedesignermustmake reasonableapproximationsfor

,% ,% and .
W
;

e now give someMonteCarlosimulationresultsthatelu-
cidate! thepropertiesof theADSE. The first setof simulations
(see
A

Fig. 7) areADFE andADSE probability of error conver-
gence/ duringtrainingfor theWienernonlinearsystempresented

3
U
This
3

is notpreciselyaccurate.After all, a termthatis dependentonprevious
statesV+W�X8Y[Z]\_^a`cb�dedfdfg�h�i�j&k[l]m[n o selectstheISI removal constant,
and p"q$rtsvu wyx{z for | }�~���� is certainlycorrelatedwith ���$������v�{�c���f�e�f���������_����� �

, but whereto draw the line andtruncatethis
tail
�

of weaklycorrelatedparametersis a difficult question—thesamequestion
the
�

Viterbi algorithmmustaddress.Our empiricalobservationis thatif thereis
somebenefit to choosing� slightly greaterthan ����� , it is not statistically
significant in thechannelwe have studied.
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(a)

(b)

Fig.
)

7. Convergenceresultsfor the (a) ADFE and(b) ADSE on the Wiener
nonlinearchannelof SectionIII, with �  ¢¡ , £ ¤�¥ , ¦¨§¢© andª�«v¬�­ ®2®
¯
at SNR= 17 dB. Thecurvesare100ensembleaveragedtrials.

in
�

SectionIII with 17 dB SNR.Since ,% the numberof
feedbackor decisionstatesis chosenas . In addition,

,% ,% and . The probability of error
is computedasdescribedin the Appendix,given the random
orientation$ of theconditionalhyperplaneswhile they converge.
Note
°

that the error probability in training modeis essentially
the
�

probability of error underthe condition that the feedback
or$ selectionstateis correct.It doesnot accountfor propagation
of$ errors,andtherefore,theprobabilityof error limits in Fig. 7
are� biasedtowardbetterperformancethantheestimateswewill
find in laterresults[i.e., the17 dB resultof Fig. 8(b)].

The
+

convergenceof theprobabilityof erroris notof thesame
natureas the convergenceof the MSE. The ADSE result of
Fig.
±

7(b) doesexhibit an exponentialdecay, but it is on a log-
arithmic� scale.The ADFE resultof Fig. 7(a) shows a similar
beha
�

vior, but theexponentialnatureis not evidentbecausethe
ADFE
0

convergesquickly to asteadystatewith moremisadjust-
menterror. The ADSE takesapproximately3000iterationsto
con! verge,whereastheADFEtakesapproximately400iterations
to
�

converge.Since ,% meaningthat the ADSE hasfour
hyperplanes,this differencein convergencerateis asexpected,
allo� wing for thefactthatADFE convergenceis reachedsooner.
One
,

approachto increasingADSEconvergencewouldbeto op-
erate* in anADFE modefor a shortperiodof time andthenuse
the
�

resultinghyperplaneasfirst estimatesfor thevariousADSE
conditional! hyperplanes.

(a)

(b)

(c)

Fig.
)

8. Simulationresultsfor ADSE with ² ³µ´ , ¶ ·¹¸ , º¼»µ½ , and¾�¿]À�Á Â2Â
Ã on thechannelsof SectionIII.

Gi
#

ven the above results for convergence,simulationsfor
steady-state� performanceasa functionof SNRwereconducted
by
�

trainingtheequalizerswith 3000samplesof data.This may
seem� likean excessivetraininginterval,but it ismeantto ensure
that
�

the ADSE is nearsteadystatebeforecollectingstatistics.
Fig.
±

8showstheperformanceof theADFE( ),
J

ADSE( ),
J

and
nonadaptive Bayesiannetwork ( )

J
on the (a) linear channel,

(b)
A

Wienernonlinearchannel,and(c) Hammersteinnonlinear
channel! describedin SectionIII. Thefirstthingwenoticein these
resultsis thatthereareregionsof divergenceof boththeADFE
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and� ADSE, where the performancedegradesconsiderably.
Thereareseveralimportantdetailsregardingthis divergence.

The
+

most importantfactor is that stability of an ADSE (or
ADFE) in decision-directedmodeisverydifferentfromstability
when� it is in trainingmode.Whenin trainingmode,theADSE
is
�

essentiallyanadaptiveFIR filter, thestabilityof which is an-
alyzed� in [7]. Conditionedon the feedbackstate,choosingthe
conditionalÝ update constantas

trace
� (2)

A

where�

will� ensureconvergencein trainingmode.This is only loosely
true
�

sincemany of the conditionson the filter input datathat
are� necessaryfor the stability analysis,e.g.,uncorrelatedand
Gaussian,
#

are not preciselymet. In any case,for the Wiener
nonlinearity@ of SectionIII with 10 dB SNR, the right sidein-
equality* limits of (2) rangefrom 0.14to 0.22.Thus,given the
relatiÞ vely small range,we have optedto fix to

�
besimply .

The resultsof Fig. 8(b) for 10 dB SNR indicatethat even for
approximately� 28 timessmallerthantheseupperlimits, the

ADSE
0

divergeswhenin decision-directedmode.
In decision-directedmode,an error will leadto a run of er-

rors.In suchasituation,coefficientsclearlyarenot adaptingto
the
�

desiredsolutionuntil by random . However,
during
&

suchan error run interval, the systemcould adaptto a
nonrecoverablemodel.Choosing smaller� will shift theregions
of$ divergencein Fig. 8 toward lower SNR.Therefore,thereis
a� tradeoff betweentrackingability anddecision-directedmode
stability� . We have chosena with� the goal of fastestconver-
gence/ yetstability in theusableSNRrange.Naturally, wehave
the
�

optionof two differentchoicesfor dependent
&

on whether
the
�

systemis trainingor tracking.
Thedivergenceproblemis compoundedby thesituationde-

scribed� in SectionIII regardingtheMMSE strategy. Uponcon-
vG ergence,theADSE doesnot attaintheoptimalhyperplanein
the
�

probability sense.Thus,the likelihoodof errorsis greater
than
�

it couldbe,whichmeansthatthelikelihoodthatthesystem
di
&

vergesover somegiven interval is alsogreaterthanit couldbe
with� anappropriatelychosenhyperplane.

As
0

for overall performancefor our example, the ADSE
matchestheADFEonthelinearISI channelFig.8(a).TheADSE
sho� wssignificantperformanceimprovementover theADFE for
the
�

WienerandHammersteinchannelnonlinearitiesFig. 8(b)
and� (c), respectively. Whencomparingresultsamongthechan-
nels,@ performanceshouldbeconsideredrelativeto theBayesian
performance." For theHammersteinchannelequalizer, itsADSE
performance" compareswith its Bayesianperformanceroughly
the
�

sameasthe linear ADSE performancecompareswith the
linearBayesianperformance.Thissuggeststhatwith theADSE,
little
�

performanceis lostdueto theHammersteinnonlinearityof
this
�

example.Thiscomesasnosurprisein light of thediscussion
in SectionIII-A. For the Wienerchannelequalizer, its ADSE
performance" comparedwith its Bayesianperformanceis not
quiteÄ asgoodasthelinearADSEperformancecomparedwith the
linearBayesianperformance,suggestingthatsomeperformance
de
&

gradationoccursfor theADSEdueto theWienernonlinearity
of$ thisexample.

V.
H

CONCLUSIONS

A
0

methodof equalizingnonlinearISI that is a simpleexten-
sion� of theADFE is proposed.The innovation is to selectand
adapt� differentlineardecisionboundarymodelsbasedon past
decisions,
&

asopposedto feedingbackthepastdecisionsthrough
a� sophisticatednonlinearfunction.This ADSE solutionshows
markedimprovementover theADFE onthenonlinearchannels
we� have studied.Its key advantageis simplicity.

There
+

is roomfor improvementover currentimplementation
of$ theADSEbecauseof thenatureof theMMSEcostminimiza-
tion
�

driving its LMS-basedalgorithms.As such,wesuggestthat
further
.

researchfocusonanadaptivealgorithmthatattemptsto
minimizeprobabilityof error.

In light of theproblemswith theMMSE strategy, theconcept
of$ decision-selectionstill remainsa valid one. The Bayesian
DFE
�

of [10] is actually the generalizationof what we have
proposed" becauseit selectsdifferentBayesiandetectorsbased
on$ the stateof pastdecisions.We suggestthat their method
be
�

calledthe BayesianADSE for this reason.However, adap-
ti
�
vely determiningtheconstellationnecessaryfor theBayesian

ADSE
0

likely becomesmoredifficult with nonlinearchannels,
largenumbersof feedforward inputs,andnon-Gaussiannoise.
Theseissueswerenot includedin theresearchof [10], but fur-
ther
�

studymaybewarranted.A very recentpaper[21] studies
a� novel piece-wiselinear, Booleanmapping-basedmethodfor
asymptotically� realizing the BayesianADSE for a linear ISI
channel.!

A
0

PPENDIX
Å

G
#

AUSSIAN TAIL IN

Let
Æ

and� be
�

themeanvectorandcovariancematrix of a
multivariateGaussiandistributionin . A Gaussiantail in
is thatportionof thedensityfunction

on$ the sideof a hyperplaneoppositethedensitycenter ,% i.e.,
the
�

spaceassociatedwith probabilitylessthan0.5.It is agener-
alization� of a tail for theunivariatenormaldistribution.Define
the
�

hyperplaneas .
To computetheprobabilityassociatedwith theGaussiantail,

a� translationmaybedonein a fashionsimilar to theunivariate
case.! First, themeanis removed by thesubstitution .
Ne
°

xt, since is positivedefinite, thereis amatrix for which
and� ,% where is matrix inverse,

and� is
�

anidentity matrix [22]. Thelinear transformation
makes a� zeromean,multivariatenormaldistributionwith

co! variancematrix . Theoriginal hyperplanetransformsto the
resultingspaceas .

Because
Ç

of thenatureof thezeromean,multivariatenormal
distrib
&

ution with covariancematrix ,% the only parameternec-
essary* for computingthe probability of error is the minimum
distance
&

from the origin to the hyperplane,say, . This dis-
tance
�

is themagnitudeof theconstantassociatedwith anormal-
izedhyperplanerepresentation,i.e., .
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W
;

ithout lossof generality, assume is a translationthat puts
the
�

hyperplaneparallelto ax� es.Then

where�

A
0
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